Preview

Офтальмохирургия

Расширенный поиск

Применение лентикулярной ткани в рефракционной хирургии роговицы

https://doi.org/10.25276/0235-4160-2021-1-68-72

Полный текст:

Аннотация

Цель. Выявить проблемы применения лентикулярной ткани, ее хранения, получения бесклеточных каркасов в тканевой инженерии роговицы, возможность прогнозирования рефракции.

Технология Relex Smile позволяет проводить коррекцию аметропии путем создания линз в строме роговицы с последующим удалением лентикулярной ткани через небольшой разрез. Уникальным преимуществом технологии Relex Smile является то, что это потенциально обратимая процедура, которая позволяет сохранить извлеченные лентикулы и открывает широкие возможности для использования лентикулы в офтальмологической практике в будущем.

Исследования в этой области продемонстрировали возможность трансплантации аутологичных и аллогенных лентикул после создания внутрироговичного кармана для лечения таких заболеваний, как пресбиопия, перфорация роговицы, кератэктазия роговицы, рецидивирующий птеригиум, прогрессирующий кератоконус.

Заключение. В данной статье представлены результаты недавних исследований, описывающих протоколы криоконсервации и децеллюляризации лентикулы как наиболее перспективных методов в тканевой инженерии в условиях дефицита донорских роговиц.

Об авторах

С. В. Костенев
ФГАУ «НМИЦ «МНТК «Микрохирургия глаза» им. акад. С.Н. Федорова» Минздрава России
Россия

Москва



С. А. Борзенок
ФГАУ «НМИЦ «МНТК «Микрохирургия глаза» им. акад. С.Н. Федорова» Минздрава России; ФГБОУ ВО «Московский государственный медико-стоматологический университет им. А.И. Евдокимова» Минздрава России
Россия

Москва



В. Г. Ли
ФГАУ «НМИЦ «МНТК «Микрохирургия глаза» им. акад. С.Н. Федорова» Минздрава России
Россия

Москва



П. О. Носиров
ФГАУ «НМИЦ «МНТК «Микрохирургия глаза» им. акад. С.Н. Федорова» Минздрава России
Россия

Москва



Список литературы

1. Santhiago MR, Kara-Junior N, Waring GO. 4th Microkeratome versus femtosecond flaps: accuracy and complications. Curr Opin Ophthalmol. 2014;25(4): 270–274. doi: 10.1097/ICU.0000000000000070

2. Sekundo W, Kunert KS, Blum M. Small incision corneal refractive surgery using the small incision lenticule extraction (SMILE) procedure for the correction of myopia and myopic astigmatism: results of a 6 month prospective study. Br J Ophthalmol. 2011;95(3): 335–339. doi: 10.1136/bjo.2009.174284

3. McColgan K. Corneal transplant surgery. J Perioper Pract. 2009;19(2): 51–54. doi: 10.1177/175045890901900201

4. Nishida K. Tissue engineering of the cornea. Cornea. 2003;22(7 Suppl): S28–34. doi: 10.1097/00003226-200310001-00005

5. Sun MT, O’Connor AJ, Wood J, et al. Tissue engineering in ophthalmology: implications for eyelid reconstruction. Ophthalmic Plast Reconstr Surg. 2017;33(3): 157–162. doi: 10.1097/IOP.0000000000000792

6. Badylak SF, Taylor D, Uygun K. Whole-organ tissue engineering: decellularization and recellularization of three-dimensional matrix scaffolds. Annu Rev Biomed Eng. 2011;13: 27–53. doi: 10.1146/annurevbioeng-071910-124743

7. Porzionato A, Stocco E, Barbon S, et al. Tissueengineered grafts from human decellularized extracellular matrices: a systematic review and future perspectives. Int J Mol Sci. 2018;19(12): 4117. doi: 10.3390/ijms19124117

8. Mohamed-Noriega K, Toh KP, Poh R, et al. Cornea lenticule viability and structural integrity after refractive lenticule extraction (ReLEx) and cryopreservation. Mol Vis. 2011;17: 3437–3449.

9. Angunawela RI, Riau AK, Chaurasia SS, et al. Refractive lenticule re-implantation after myopic ReLEx: a feasibility study of stromal restoration after refractive surgery in a rabbit model. Invest Ophthalmol Vis Sci. 2012;53(8): 4975–4985. doi: 10.1167/iovs.12-10170

10. Riau AK, Angunawela RI, Chaurasia SS., et al. Reversible femtosecond laser-assisted myopia correction: a non-human primate study of lenticule re-implantation after refractive lenticule extraction. PLoS One. 2013;8(6): e67058. doi: 10.1371/journal.pone.0067058

11. Lim CH, Riau AK, Lwin NC, et al. LASIK following small incision lenticule extraction (SMILE) lenticule reimplantation: a feasibility study of a novel method for treatment of presbyopia. PLoS One. 2013;8(12): e83046. doi: 10.1371/journal.pone.0083046

12. Sun Y, Zhang T, Zhou Y, et al. Reversible femtosecond laser-assisted endokeratophakia using cryopreserved allogeneic corneal lenticule. J Refract Surg. 2016;32(8): 569–576. doi: 10.3928/1081597X-20160523-02

13. Ganesh S, Brar S, Rao PA. Cryopreservation of extracted corneal lenticules after small incision lenticule extraction for potential use in human subjects. Cornea. 2014;33(12): 1355–1362. doi: 10.1097/ICO.0000000000000276

14. Liu YC, Williams GP, George BL, et al. Corneal lenticule storage before reimplantation. Mol Vis. 2017;23: 753–764. Available from: http://www.molvis.org/molvis/v23/753/ [Accessed 18th December 2019].

15. Yam GH, Yusoff NZ, Goh TW, et al. Decellularization of human stromal refractive lenticules for corneal tissue engineering. Sci Rep. 2016;6: 26339. doi: 10.1038/srep26339

16. Yin H, Qiu P, Wu F, et al. Construction of a corneal stromal equivalent with SMILE-derived lenticules and fibrin glue. Sci Rep. 2016;6: 33848. doi: 10.1038/srep33848

17. Huh MI, Lee KP, Kim J, et al. Generation of femtosecond laser-cut decellularized corneal lenticule using hypotonic trypsin-EDTA solution for corneal tissue engineering. J Ophthalmol. 2018;4: 2590536. doi: 10.1155/2018/2590536

18. Liu H, Zhu W, Jiang AC, et al. Femtosecond laser lenticule transplantation in rabbit cornea: experimental study. J Refract Surg. 2012;28(12): 907–911. doi: 10.3928/1081597X-20121115-05

19. Liu R, Zhao J, Xu Y, et al. Femtosecond laserassisted corneal small incision allogenic intrastromal lenticule implantation in monkeys: a pilot study. Invest Ophthalmol Vis Sci. 2015;56(6): 3715–3720. doi: 10.1167/iovs.14-15296

20. Zhao J, Shen Y, Tian M, et al. Corneal lenticule allotransplantation after femtosecond laser small incision lenticule extraction in rabbits. Cornea. 2017;36(2): 222–228. doi: 10.1097/ICO.0000000000001076

21. Liu LP, Wang Y, He M, et al. Preliminary investigation femtosecond laser-assisted refractive lenticule transplantation in rhesus monkeys. J Sunyat-sen Univ (Medical Sciences). 2015;36: 449–455.

22. Jin H, Liu L, Ding H, et al. Comparison of femtosecond laser-assisted corneal intrastromal xenotransplantation and the allotransplantation in rhesus monkeys. BMC Ophthalmol. 2017;17(1): 202. doi: 10.1186/s12886-017-0595-z

23. He M, Jin H, He H, et al. Femtosecond laser-assisted small incision endokeratophakia using a xenogeneic lenticule in rhesus monkeys. Cornea. 2018;37(3): 354–361. doi: 10.1097/ICO.0000000000001470

24. Jin H, He M, Wang W, et al. Comparison of small-incision femtosecond laser-assisted intrastromal keratoplasty and lamellar keratoplasty in rhesus monkeys using xenogenic corneal lamellae. Curr Mol Med. 2018;18(6): 365–375. doi: 10.2174/1566524018666181109120023

25. Jin H, Liu L, Ding H, et al. Small incision femtosecond laser-assisted X-ray-irradiated corneal intrastromal xenotransplantation in rhesus monkeys: a preliminary study. Curr Mol Med. 2018;18(9): 612–621. doi: 10.2174/1566524019666190129123935

26. Liu YC, Teo EPW, Ang HP, et al. Biological corneal inlay for presbyopia derived from small incision lenticule extraction (SMILE). Sci Rep. 2018;8(1): 1831. doi: Available from: 10.1038/s41598-018-20267-7

27. Williams GP, Wu B, Liu YC, et al. Hyperopic refractive correction by LASIK, SMILE or lenticule reimplantation in a non-human primate model. PLoS One. 2018;13(3): e0194209. doi: 10.1371/journal.pone.0194209

28. Liu YC, Wen J, Teo EPW, et al. Higher-orderaberrations following hyperopia treatment: small incision lenticule extraction, laser-assisted in situ keratomileusis and lenticule implantation. Transl Vis Sci Technol. 2018;7(2): 15. doi: 10.1167/tvst.7.2.15

29. Pradhan KR, Reinstein DZ, Carp GI, et al. Femtosecond laser-assisted keyhole endokeratophakia: correction of hyperopia by implantation of an allogeneic lenticule obtained by SMILE from a myopic donor. J Refract Surg. 2013;29(11): 777–782. doi: 10.3928/1081597X-20131021-07

30. Sun L, Yao P, Li M, et al. The safety and predictability of implanting autologous lenticule obtained by SMILE for hyperopia. J Refract Surg. 2015;31(6): 374–379. doi: 10.3928/1081597X-20150521-03

31. Li M, Li M, Sun L, et al. In vivo confocal microscopic investigation of the cornea after autologous implantation of lenticules obtained through small incision lenticule extraction for treatment of hyperopia. Clin Exp Optom. 2018;101(1): 38–45. doi: 10.1111/cxo.12595

32. Mastropasqua L, Nubile M. Corneal thickening and central flattening induced by femtosecond laser hyperopic-shaped intrastromal lenticule implantation. Int Ophthalmol. 2017;37(4): 893–904. doi: 10.1007/s10792-016-0349-6

33. Jacob S, Kumar DA, Agarwal A, et al. Preliminary evidence of successful near vision enhancement with a new technique: presbyopic allogenic refractive lenticule (PEARL) corneal inlay using a SMILE lenticule. J Refract Surg. 2017;33(4): 224–229. doi: 10.3928/1081597X-20170111-03

34. Moshirfar M, Shah TJ, Masud M, et al. A modified small-incision lenticule intrastromal keratoplasty (sLIKE) for the correction of high hyperopia: a description of a new surgical technique and comparison to lenticule intrastromal keratoplasty (LIKE). Med Hypothesis Discov Innov Ophthalmol. 2018;7(2): 48–56.

35. Damgaard IB, Ivarsen A, Hjortdal J. Biological lenticule implantation for correction of hyperopia: an ex vivo study in human corneas. J Refract Surg. 2018;34(4): 245–252. doi: 10.3928/1081597X-20180206-01

36. Li M, Li M, Sun L, et al. Predictive formula for refraction of autologous lenticule implantation for hyperopia correction. J Refract Surg. 2017;33(12): 827–833. doi: 10.3928/1081597X-20171016-01

37. Ganesh S, Brar S. Femtosecond intrastromal lenticular implantation combined with accelerated collagen cross-linking for the treatment of keratoconus: initial clinical result in 6 eyes. Cornea. 2015;34(10):1331-1139. doi: 10.1097/ICO.0000000000000539

38. Ganesh S, Brar S. Clinical outcomes of small incision lenticule extraction with accelerated cross-linking (ReLEx SMILE Xtra) in patients with thin corneas and borderline topography. J Ophthalmol. 2015;2015: 263412. doi: 10.1155/2015/263412

39. Sachdev MS, Gupta D, Sachdev G, et al. Tailored stromal expansion with a refractive lenticule for crosslinking the ultrathin cornea. J Cataract Refract Surg. 2015;41(5): 918–923. doi: 10.1016/j.jcrs.2015.04.007

40. Zhou Y, Liu M, Zhang T, et al. In vivo confocal laser microscopy of morphologic changes after small incision lenticule extraction with accelerated cross-linking (SMILE Xtra) in patients with thin corneas and high myopia. Graefes Arch Clin Exp Ophthalmol. 2018;256(1): 199–207. doi: 10.1007/s00417-017-3811-x

41. Damgaard IB, Liu YC, Riau AK, et al. Corneal remodelling and topography following biological inlay implantation with combined crosslinking in a rabbit model. Sci Rep. 2019;9(1): 4479. doi: 10.1038/s41598-019-39617-0

42. Lazaridis A, Reinstein DZ, Archer TJ, et al. Refractive lenticule transplantation for correction of iatrogenic hyperopia and high astigmatism after LASIK. J Refract Surg. 2016;32(11): 780–786. doi: 10.3928/1081597X-20160726-01

43. Pant OP, Hao JL, Zhou DD, et al. A novel case using femtosecond laser-acquired lenticule for recurrent pterygium: case report and literature review. J Int Med Res. 2018;46(6): 2474–2480. doi: 10.1177/0300060518765303

44. Jin H, He M, Liu H, et al. Small-incision femtosecond laser-assisted intracorneal concave lenticule implantation in patients with keratoconus. Cornea. 2019;38(4): 446–453. doi: 10.1097/ICO.0000000000001877

45. Zhao J, Shang J, Zhao Y, et al. Epikeratophakia using small-incision lenticule extraction lenticule addition combined with corneal crosslinking for keratoconus. J Cataract Refract Surg. 2019;45(8): 1191–1194. doi: 10.1016/j.jcrs.2019.03.010

46. Pradhan KR, Reinstein DZ, Vida RS, et al. Femtosecond laser-assisted small incision sutureless intrastromal lamellar keratoplasty (SILK) for corneal transplantation in keratoconus. J Refract Surg. 2019;35(10): 663–671. doi: 10.3928/1081597X-20190826-01

47. Jacob S, Narasimhan S, Agarwal A, et al. Combined interface tattooing and fibrin glue-assisted sutureless corneal resurfacing with donor lenticule obtained from small-incision lenticule extraction for limbal dermoid. J Cataract Refract Surg. 2017;43(11): 1371–1375. doi: 10.1016/j.jcrs.2017.09.021

48. Pant OP, Hao JL, Zhou DD, et al. Lamellar keratoplasty using femtosecond laser intrastromal lenticule for limbal dermoid: case report and literature review. J Int Med Res. 2018;46(11): 4753–4759. doi: 10.1177/0300060518790874

49. Bhandari V, Ganesh S, Brar S, et al. Application of the SMILE-derived glued lenticule patch graft in microperforations and partial-thickness corneal defects. Cornea. 2016;35(3): 408–412. doi: 10.1097/ICO.0000000000000741

50. Jacob S, Dhawan P, Tsatsos M, et al. Fibrin glueassisted closure of macroperforation in predescemetic deep anterior lamellar keratoplasty with a donor obtained from small incision lenticule extraction. Cornea. 2019;38(6): 775–779. doi: 10.1097/ICO.0000000000001918

51. Li M, Zhao F, Li M, et al. Treatment of corneal ectasia by implantation of an allogenic corneal lenticule. J Refract Surg. 2018;34(5): 347–350. doi: 10.3928/1081597X-20180323-01

52. Pant OP, Hao JL, Zhou DD, et al. Tectonic keratoplasty using femtosecond laser lenticule in pediatric patients with corneal perforation secondary to blepharokeratoconjunctivitis: a case report and literature review. J Int Med Res. 2019;47(5): 2312–2320. doi: 10.1177/0300060519841163

53. Zhao J, Zhao F, Huang J, et al. Two-year outcome of a patient treated with phototherapeutic keratectomy and autologous SMILE lenticule transplantation for flap-related complications following LASIK. J Refract Surg. 2018;34(4): 281–285. doi: 10.3928/1081597X-20180130-01

54. Song YJ, Kim S, Yoon GJ. Case series: use of stromal lenticule as patch graft. Am J Ophthalmol Case Rep. 2018;12: 79–82. doi: 10.1016/j.ajoc.2018.09.009

55. Wang Y, Li X, Huang W, Liu J, et al. Partial thickness cornea tissue from small incision lenticule extraction: a novel patch graft in glaucoma drainage implant surgery. Medicine (Baltimore). 2019;98(9): e14500. doi: 10.1097/MD.0000000000014500

56. Gu J, Wang Y, Cui Z, et al. The construction of retinal pigment epithelium sheets with enhanced characteristics and cilium assembly using iPS conditioned medium and small incision lenticule extraction derived lenticules. Acta Biomater. 2019;92: 115–131. doi: 10.1016/j.actbio.2019.05.017


Для цитирования:


Костенев С.В., Борзенок С.А., Ли В.Г., Носиров П.О. Применение лентикулярной ткани в рефракционной хирургии роговицы. Офтальмохирургия. 2021;(1):68-72. https://doi.org/10.25276/0235-4160-2021-1-68-72

For citation:


Kostenev S.V., Borzenok S.A., Lee V.G., Nosirov P.O. The use of lenticular tissue in corneal refractive surgery. Fyodorov Journal of Ophthalmic Surgery. 2021;(1):68-72. (In Russ.) https://doi.org/10.25276/0235-4160-2021-1-68-72

Просмотров: 68


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 0235-4160 (Print)
ISSN 2312-4970 (Online)