Сравнительный анализ клинико-функциональных результатов задней послойной кератопластики с использованием фемтосекундного лазера и микрокератома


https://doi.org/10.25276/0235-4160-2019-1-20-26

Полный текст:


Аннотация

Цель. Сравнить клинико-функциональные результаты задней по­слойной кератопластики (ЗПК) с выкраиванием трансплантата при помощи лазера (ФЛ-ЗПК) либо механического автоматизированно­го микрокератома (ЗАПК).

Материал и методы. В проспективное моноцентровое рандоми­зированное исследование включено 38 пациентов (39 глаз) с эндо­телиальной дистрофией роговицы Фукса и сопутствующей катарак­той. В основной группе, 19 пациентов (19 глаз), проведена ФЛ-ЗПК и факоэмульсификация с имплантацией ИОЛ. В группе контроля, 19 пациентов (20 глаз), выполнена ЗАПК с использованием микрокера­тома одномоментно с факоэмульсификацией и имплантацией ИОЛ. В ходе исследования применяли стандартные и специализирован­ные (оптическая когерентная томография переднего отрезка глаза, иммерсионная конфокальная микроскопия, кератопахиметрия, эндо­телиальная микроскопия) методы обследования. Оценку геометрии трансплантата проводили, изучая соотношение его толщин в центре и на периферии (индекс Ц:П). Максимальный срок наблюдения за оперированными пациентами составил 1 год.

Результаты. В основной группе прозрачное приживление заре­гистрировано в 89,5% случаев, в группе контроля - в 95%. В отда­ленные сроки наблюдения (более 6 мес.) не выявлено различий показателей НКОЗ и КОЗ между группами (p>0,05). В основной и кон­трольной группах значения Ц:П составили 0,88 (0,85; 0,95) и 0,55 (0,48; 0,68) соответственно (p<0,001). Значение гиперметропическо­го сдвига в основной группе было равно 0,27±0,9 дптр и 1,25±0,81 дптр - в группе контроля (p=0,002). Выявлена взаимосвязь между ги­перметропическим сдвигом и индексом Ц:П трансплантата (r=-0,406; p=0,019). Снижение ПЭК к 12 мес. наблюдения в основной группе была выше, чем в контрольной, составив 64,1±8,8 и 54,6±4,8% со­ответственно (p<0,001).

Заключение. Клинико-функциональные результаты в ближайшие и отдаленные сроки наблюдения были сопоставимы между двумя ва­риантами техники операции. Использование фемтосекундного лазе­ра позволяет получить более равномерный по своей толщине транс­плантат по сравнению с техникой ЗАПК. Нами выявлено наличие за­висимости между индексом Ц:П трансплантата и развитием гиперме­тропии у пациентов после операции, а также подтвержден меньший гиперметропический сдвиг (0,27±0,9 дптр) при ФЛ-ЗПК в сравнении с ЗАПК (1,25±0,81 дптр).


Об авторах

Б. Э. Малюгин
ФГАУ «НМИЦ «МНТК «Микрохирургия глаза» им. акад. С.Н. Федорова» Минздрава России.
Россия
Москва.


Н. Ф. Шилова
ФГАУ «НМИЦ «МНТК «Микрохирургия глаза» им. акад. С.Н. Федорова» Минздрава России.
Россия
Москва.


О. П. Антонова
ФГАУ «НМИЦ «МНТК «Микрохирургия глаза» им. акад. С.Н. Федорова» Минздрава России.
Россия
Москва.


Н. С. Анисимова
ФГАУ «НМИЦ «МНТК «Микрохирургия глаза» им. акад. С.Н. Федорова» Минздрава России.
Россия
Москва.


И. Н. Шормаз
ФГАУ «НМИЦ «МНТК «Микрохирургия глаза» им. акад. С.Н. Федорова» Минздрава России.
Россия
Москва.


Список литературы

1. Малюгин Б.Э., Мороз З.И., Борзенок С.А. и др. Первый опыт и клинические результаты зад¬ней автоматизированной послойной кератопла¬стики (ЗАПК) с использованием предваритель¬но выкроенных консервированных ультратон¬ких роговичных трансплантатов. Офтальмохирургия. 2013;3:12-16.

2. Дроздов И.В. Хирургическое лечение эпите-лиально-эндотелиальной дистрофии роговицы ме-тодом задней автоматизированной послойной кера-топластики с использованием ультратонких транс-плантатов. Дис. ... канд. мед наук. М., 2013.

3. Погорелова С.С., Грдиканьян А.А., Ченцова Е.В. и др. Анализ плотности эндотелиальных клеток в среднесрочный период наблюдения после эндоте-лиальной кератопластики с формированием транс-плантата фемтосекундным лазером со стороны эндо-телия. Российский медицинский журнал. 2016;1:10- 13.

4. Яковлева С.С. Инвертное фемтолазерное формирование трансплантата для задней кератопла-стики: Дис. ... канд. мед. наук. М., 2017.

5. Aнтонова О.П. Современные аспекты ди-агностики и лечения первичной эндотелиаль¬ной дистрофии роговицы (Фукса). Дис. ... канд. мед наук. M., 2017.

6. Afshari N.A., Pittard A.B., Siddiqui A., Klintworth G.K. Clinical study of fuchs corneal endothelial dystrophy leading to penetrating keratoplasty: A 30-year experience. Arch. Ophthalmol. 2006;6:777-780. Available from: https://doi.org/10.1001/archopht.124.6.777.

7. Terry M.A., Shamie N., Chen E.S. et al. Endothelial Keratoplasty for Fuchs’ Dystrophy with Cataract. Complications and Clinical Results with the New Triple Procedure. Ophthalmology 2009;4:631-639. Available from: https://doi.org/10.1016/j.ophtha.2008.11.004.

8. Melles G.R.J., Ong T.S., Ververs B., van der Wees J. Descemet membrane endothelial keratoplasty (DMEK). Cornea. 2006;2:199-206. Available from: https://doi. org/10.1111/j.1574-695X.2006.00082.x.

9. Da Reitz Pereira C., Guerra F.P., Price F.W., Price M.O. Descemet’s membrane automated endothelial keratoplasty (DMAEK): Visual outcomes and visual quality. Br. J. Ophthalmol. 2011;7:951-954. Available from: http://dx.doi.org/10.1136/bjo.2010.191494.

10. Sikder S., Snyder R.W. Femtosecond laser preparation of donor tissue from the endothelial side. Cornea. 2006;4:416-422. Available from: https://doi. org/10.1097/01.ico.0000195948.86071.98.

11. Gorovoy M.S. Descemet-stripping automated endothelial keratoplasty. Cornea. 2006;8:886- 889. Available from: https://doi.org/10.1097/01. ico.0000214224.90743.01.

12. Mehta J.S., Parthasarthy A., Por Y.-M. et al. Femtosecond laser-assisted endothelial keratoplasty: a laboratory model. Cornea. 2008;27:706-712. Available from: https://doi.org/10.1097/qai.0b013e31815ee267.

13. Rosa A.M., Silva M.F., Quadrado M.J. et al. Femtosecond laser and microkeratome-assisted Descemet‘s stripping endothelial keratoplasty: First clinical results. Br. J. Ophthalmol. 2013;9:1104- 1107. Available from: http://dx.doi.org/10.1136/ bjophthalmol-2012-302378.

14. Chylack L.T., Wolfe J.K., Singer D.M. et al. The Lens Opacities Classification System III. Arch. Ophthalmol. 1993;6:831-836.

15. Covert D.J., Koenig S.B. New Triple Procedure: Descemet’s Stripping and Automated Endothelial Keratoplasty Combined with Phacoemulsification and Intraocular Lens Implantation. Ophthalmology. 2007;6:670-674.

16. Dickman M.M., Cheng Y.Y.Y., Berendschot T.T.J.M. et al. Effects of graft thickness and asymmetry on visual gain and aberrations after descemet stripping automated endothelial keratoplasty. JAMA Ophthalmol. 2013;6:737-744. Available from: https:// doi.org/10.1001/jamaophthalmol.2013.73.

17. Heinzelmann S., Maier P., Bohringer D. et al. Visual outcome and histological findings following femtosecond laser-assisted versus microkeratome- assisted DSAEK. Graefe’s Arch. Clin. Exp. Ophthalmol. 2013;8:1979-1985. Available from: https://doi. org/10.1007/s00417-013-2359-7.

18. Bahar I., Kaiserman I., Livny E. et al. Changes in corneal curvatures and anterior segment parameters after descemet stripping automated endothelial keratoplasty. Curr. Eye Res. 2010;11:961-966. Available from: https://doi.org/10.3109/02713683.2010.506967.

19. Dupps W.J., Qian Y., Meisler D.M. Multivariate model of refractive shift in Descemet-stripping automated endothelial keratoplasty. J. Cataract Refract. Surg. 2008;4:578-584. Available from: https://doi. org/10.1016/j.jcrs.2007.11.045.

20. Holz H.A., Meyer J.J., Espandar L. et al. Corneal profile analysis after Descemet stripping endothelial keratoplasty and its relationship to postoperative hyperopic shift. J. Cataract Refract. Surg. 2008;34:211- 214. Available from: https://doi.org/10.1016/j. jcrs.2007.09.030.

21. Yoo S.H., Kymionis G.D., Deobhakta A.A. et al. One-year results and anterior segment optical coherence tomography findings of descemet stripping automated endothelial keratoplasty combined with phacoemulsification. Arch. Ophthalmol. 2008;8:1052- 1055. Available from: https://doi.org/10.1001/ archopht.126.8.1052.

22. Hjortdal J. Inverse Cutting of Posterior Lamellar Corneal Grafts by a Femtosecond Laser. Open Ophthalmol. 2012;6:19-22. Available from: https://doi. org/ 10.1001/archopht.126.8.1052.

23. Sikder S., Snyder R.W. Femtosecond laser preparation of donor tissue from the endothelial side. Cornea. 2006; 4: 416-422. Available from: https://doi. org/ 10.1001/archopht.126.8.1052.

24. Koenig S.B., Covert D.J., Dupps W.J., Meisler D.M. Visual acuity, refractive error, and endothelial cell density six months after Descemet stripping and automated endothelial keratoplasty (DSAEK). Cornea. 2007; 6:670-674. Available from: https://doi.org/ 10.1097/ICO.0b013e3180544902.

25. Busin M., Madi S., Santorum P. et al. Ultrathin descemet’s stripping automated endothelial keratoplasty with the microkeratome double-pass technique: Two-year outcomes. Ophthalmology. 2013;6:1186- 1194. Available from: https://doi.org/10.1016/j. ophtha.2012.11.030.

26. Jun B., Kuo A.N., Afshari N.A. et al. Refractive change after descemet stripping automated endothelial keratoplasty surgery and its correlation with graft thickness and diameter. Cornea. 2009;1:19-23. Available from: https://doi.org/10.1097/ico.0b013e318182a4c1.

27. Woodward M.A., Titus M.S., Shtein R.M. Effect of microkeratome pass on tissue processing for descemet stripping automated endothelial keratoplasty. Cornea. 2014;5:507-509. Available from: https://doi. org/10.1097/ico.0000000000000093.

28. Liu YC, Teo EPW, Adnan KB, et al. Endothelial approach ultrathin corneal grafts prepared by femtosecond laser for descemet stripping endothelial keratoplasty. Invest. Ophthalmol. Vis Sci. 2014;12:8393-8401. Available from: https://doi.org/10.1167/iovs.14-15080.

29. Li JY, Terry MA, Goshe J, Davis-Boozer D, Shamie N. Three-year visual acuity outcomes after Descemet’s stripping automated endothelial keratoplasty. Ophthalmology 2012; 6: 1126-1129. Available from: https://doi.org/10.1016/j.ophtha.2011.12.037.


Дополнительные файлы

Для цитирования: Малюгин Б.Э., Шилова Н.Ф., Антонова О.П., Анисимова Н.С., Шормаз И.Н. Сравнительный анализ клинико-функциональных результатов задней послойной кератопластики с использованием фемтосекундного лазера и микрокератома. Офтальмохирургия. 2019;(1):20-26. https://doi.org/10.25276/0235-4160-2019-1-20-26

For citation: Malyugin B.E., Shilova N.F., Antonova O.P., Anisimova N.S., Shormaz I.N. Clinical and functional results following femtosecond laser-assisted DSEK versus microkeratome-assisted DSAEK surgeries. A comparative study. Fyodorov Journal of Ophthalmic Surgery. 2019;(1):20-26. (In Russ.) https://doi.org/10.25276/0235-4160-2019-1-20-26

Просмотров: 33

Обратные ссылки

  • Обратные ссылки не определены.


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 0235-4160 (Print)
ISSN 2312-4970 (Online)