Preview

Офтальмохирургия

Расширенный поиск

ТЕОРЕТИЧЕСКИЕ ПРЕДПОСЫЛКИ К ВЫБОРУ МАТЕРИАЛА ДЛЯ МАТРИЦЫ БИОИНЖЕНЕРНОЙ КОНСТРУКЦИИ ИСКУССТВЕННОЙ РОГОВИЦЫ

https://doi.org/10.25276/0235-4160-2013-4-86-88

Аннотация

Реферат

Работа посвящена аналитическому обзору биополимерных материалов, используемых в настоящее время для конструирования матриц биоинженерных конструкций тканей. Проанализированы полимерные материалы: альгинат, хитозан, коллаген, спидроин. Показаны положительные и отрицательные их стороны для конструирования матрицы биоинженерной конструкции искусственной роговицы. Наиболее перспективным и отвечающий требованиям для конструирования матриц искусственной роговицы, по нашему мнению, является биосинтетический аналог шелка паутинной нити – спидроин. Спидроин обладает выраженными механическими свойствами, высокой адгезивностью, биоинертностью, биосовместимостью, устойчивостью к условиям внешней среды, абсолютной прозрачностью, что делает его материалом выбора для создания 3D матрицы искусственной роговицы.

Об авторах

С. А. Борзенок
ФГБУ «МНТК «Микрохирургия глаза им. акад. С.Н.Федорова» Минздрава России, Москва ГБОУ ВПО «Московский государственный медико-стоматологический университет им. А.И. Евдокимова» Минздрава России
Россия

докт. мед. наук, академик РАЕН, зав. Центром фундаментальных и прикладных медико-биологических проблем; Адрес: 127486, Москва, Бескудниковский бульвар, 59а. Тел.: (499) 488-8552.

профессор кафедры глазных болезней; Адрес: 127473, Москва, ул. Делегатская, 20, стр. 1. Тел.: (499) 488-8558



А. А. Желтоножко
ФГБУ «МНТК «Микрохирургия глаза им. акад. С.Н.Федорова» Минздрава России, Москва
Россия
врач-офтальмолог Глазного тканевого банка; Адрес: 127486, Москва, Бескудниковский бульвар, 59а. Тел.: (499) 488-8552.


Ю. А. Комах
ФГБУ «МНТК «Микрохирургия глаза им. акад. С.Н.Федорова» Минздрава России, Москва
Россия
канд. мед. наук, зав. лабораторией трансплантологии и клеточной биологии; Адрес: 127486, Москва, Бескудниковский бульвар, 59а. Тел.: (499) 488-8552.


И. Н. Сабурина
ФГБУ «Научно-исследовательский институт общей патологии и патофизиологии» РАМН, Москва ГБОУ ДПО «Российская медицинская академия последипломного образования» Минздрава России, Москва
Россия

докт. биол. наук, зав. лабораторией клеточной биологии и патологии развития; Адрес: 123995, Москва, ул. Баррикадная, 2/1

профессор кафедры патофизиологии; Адрес: 125315, Москва, ул. Балтийская, 8. Тел.: (499) 151-1756 ГБОУ ДПО «Российская медицинская академия последипломного образования» Минздрава России 



И. И. Агапов
ФГБУ «Федеральный научный центр трансплантологии и искусственных органов им. акад. В.И. Шумакова» Минздрава России, Москва ГБОУ ВПО «Московский государственный университет им. М.В. Ломоносова»
Россия

зав. лабораторией бионанотехнологий; Адрес: 123182, Москва, ул. Щукинская, 1. Тел.: (495) 544-1800

докт. биол. наук, профессор, доцент кафедры биоинженерии биологического факультета; Адрес: 119991, Москва, ГСП-1, Ленинские горы, 1, стр. 12. Тел.: (495) 939-2776



В. Г. Богуш
ФГУП «Государственный научно-исследовательский институт генетики и селекции промышленных микроорганизмов», Москва
Россия
канд. биол. наук, ведущ. научн. сотрудник лаборатории белковой инженерии; Адрес: 117545, Москва, 1-й Дорожный проезд, 1. Тел.: (495) 315-3747


Список литературы

1. Агапов И.И., Пустовалова О.Л., Мойсенович М.М. и др. Трехмерный матрикс из рекомбинантного белка паутины для тканевой инженерии // Доклады Академии наук.– 2009.– Т. 426, № 1.– С. 115-118.

2. Борзенок С.А. Медико-технологические и методологические основы эффективной деятельности глазных тканевых банков России в обеспечении операций по сквозной трансплантации роговицы: Дис. … д-ра мед. наук .– М., 2008.– 306 с.

3. Борзенок С.А., Ролик О.И., Онищенко Н.А., Комах Ю.А. О возможности совершенствования консервации донорских роговиц путем применения регуляторных пептидов // Вестник трансплантологии и искусственных органов.– М., 2011.– № 4.– С. 101-105.

4. Борзенок С.А., Сабурина И.Н., Репин В.С. и др. Методологические и технологические проблемы конструирования искусственной роговицы на базе 3D-клеточного культивирования // Офтальмохирургия.– 2012.– №4.– С. 12-17.

5. Волова Т.Г., Севастьянова В.И., Шишацкая Е.И. Полиоксиалканоаты.– Красноярск: Платина, 2006.– 288 с.

6. Хенч Л., Джонс Д. Биоматериалы, искусственные органы и инжиниринг тканей.– М.: Техносфера, 2007.– 304 с.

7. Хилькин А.М., Шехтер А.Б., Истранов Л.П., Леменев В.Л. Коллаген и его применение в медицине.– М.: Техносфера, 1976.– 256 с.

8. Шумаков В.И., Севастьянов В.И. Биополимерные матриксы для искусственных органов и тканей // Здравоохранение и мед. техника.– 2003.– № 4 .– С. 30–32.

9. Allmeling C., Jokuszies A., Reimers K. et al. Spider silk fibres in artificial nerve constructs promote peripheral nerve regeneration // Cell Prolif.– 2008.– Vol. 41, № 3.– P. 408-420.

10. Auxenfans C., Builles N., Andre V. et al. Porous matrix and primary-cell culture: a shared concept for skin and cornea tissue engineering // Pathol. Biol.– 2009.– Vol. 57, № 4.– P. 290-298.

11. Carlsson D.J., Li F., Shimmura S., Griffith M. Bioengineered corneas: How close are we? // Curr. Opin. Ophthalmol.– 2003.– Vol. 14, № 4.– P. 192-197.

12. Carrier P., Deschambeault A., Talbot M. et al. Characterization of wound reepithelialization using a new human tissue-engineered corneal wound-healing model // Invest. Ophthalmol. Vis. Sci.– 2008.– Vol. 49, № 4.– P. 1376-1385.

13. Chandy T., Sharma C.P. Chitosan – as a biomaterial // Biomat. Artif. Cells Artif. Org.– 1990.– Vol. 18, № 1.– P. 1-24.

14. Chen J., Li Q., Xu J. et al. Study on biocompatibility of complexes of collagenchitosan-sodium hyaluronate and cornea // Artif. Organs.– 2005.– Vol. 29, № 2.– P. 104-113.

15. Chuang W.Y., Young T.H., Yao C.H., Chiu W.Y. Properties of the poly(vinyl alcohol)/chitosan blend and its effect on the culture of fibroblast in vitro // Biomaterials.– 1999.– Vol. 20, № 16.– P. 1479-1487.

16. Chung T.W., Yang J., Akaike T. et al. Preparation of alginate/galactosylated chitosan scaffold for hepatocyte attachment // Biomaterials.– 2002.– Vol. 23, № 14.– P. 2827-2834.

17. Doillon C.J., Watsky M.A., Hakim M. et al. A collagen-based scaffold for a tissue engineered human cornea: physical and physiological properties // Int. J. Artif. Organs.– 2003.– Vol. 26, № 8.– P. 764-773.

18. Freed L.E., Vunjak-Novakovic G., Biron R.J. et al. Biodegradable polymer scaffolds for tissue engineering // Biotechnology.– 1994.– Vol. 12, № 7.– P. 689-693.

19. Fu Y., Fan X., Chen P. et al. Reconstruction of a tissue-engineered cornea with porcine corneal acellular matrix as the scaffold // Cells Tissues Organs.– 2010.– Vol. 191, № 3.– P. 193-202.

20. Gellynck K., Verdonk P.C., Van Nimmen E. et al. Silkworm and spider silk scaffolds for chondrocyte support // J. Mater. Sci. Mater. Med.– 2008.– Vol. 19, № 11.– P. 3399-3409.

21. George A.J., Larkin D.F. Corneal transplantation: the forgotten graft // Am. J. Transplant.– 2004.– Vol. 4, № 5.– Р. 678-685.

22. Glicklis R., Shapiro L., Agbaria R. et al. Hepatocyte behavior within three-dimensional porous alginate scaffolds // Biotechnol. Bioeng.– 2000.– Vol. 67, № 3.– Р. 344-353.

23. Griffith M., Hakim M., Shimmura S. et al. Artificial human corneas: scaffolds for transplantation and host regeneration // Cornea.– 2002.– Vol. 21, № 7.– P. 54-61.

24. Griffith M., Jackson W.B., Lagali N. et al. Artificial corneas: a regenerative medicine approach // Eye.– 2009.– Vol. 23, № 10.– P. 1985-1989.

25. Han B., Huang L.L., Cheung D. et al. Polypeptide growth factors with a collagen binding domain: Their potential for tissue repair and organ regeneration. In Zilla P and Greisler HP, editors. Tissue engineering of vascular prosthetic grafts.– Austin: RG Landes, 1999.– Р. 287-299.

26. Hayashi T. Biodegradable polymers for biomedical uses // Prog. Polym. Sci.– 1994.– Vol. 19, № 4.– Р. 663-702.

27. Hsiue G.H., Lai J.Y., Chen K.H., Hsu W.M. A novel strategy for corneal endothelial reconstruction with a bioengineered cell sheet // Transplantation.– 2006.– Vol. 81, № 3.– P. 473- 476.

28. Huang S., Ingber D.E. The structural and mechanical complexity of cell-growth control // Nat. Cell Biol.– 1999.– Vol. 1, № 3.– P. 131-138.

29. Hutmacher D.W. Scaffold design and fabrication technologies for engineering tissuesstate of the art and future perspectives // J. Biomater. Sci. Polym. Ed.– 2001.– Vol. 12, № 1.– P. 107-124.

30. Liu W., Merrett K., Griffith M. et al. Recombinant human collagen for tissue engineered corneal substitutes // Biomaterials.– 2008.– Vol. 29, № 9.– P. 1147-1158.

31. Madihally S.V., Matthew H.W. Porous chitosan scaffolds for tissue engineering // Biomaterials.– 1999.– Vol. 20, № 12.– P. 1133-1142.

32. Orive G., Hernandez R.M., Gascon A.R. et al. Survival of different cell lines in alginate-agarose microcapsules // Eur. J. Pharm. Sci.– 2003.– Vol. 18, № 1.– P. 23-30.

33. Rowley J.A., Mooney D.J. Alginate type and RGD density control myoblast phenotype // J. Biomed. Mater. Res.– 2002.– Vol. 60, № 2.– P. 217- 223.

34. Ruberti J.W., Zieske J.D. Prelude to corneal tissue engineering – gaining control of collagen organization // Prog. Retin. Eye Res.– 2008.– Vol. 27.– P. 549-577.

35. Sachlos E., Czernuszka J.T. Making Tissue Engineering Scaffolds Work. Review: The application of solid freeform fabrication technology to the production of tissue engineering scaffolds // Eur. Cell Mater.– 2003.– Vol. 5.– P. 29-40.

36. Sevastianov V.I., Vasilets V.N., Agapov I.I. Biopolymer implants for high-technology assistance in the field of replacement and regenerative medicine // Rare Metals.– 2009.– Vol. 28.– P. 84-86.

37. Shah, A., Brugnano, J., Sun, S. The Development of a Tissue-Engineered Cornea: Biomaterials and Culture Methods // Pediatr. Res.– 2008.– Vol. 63, № 5.– P. 535-544.

38. Streuli C.H., Bissell M.J. Expression of extracellular matrix components is regulated by substratum // J. Cell. Biol.– 1990.– Vol. 110, № 4.– P. 1405-1415.

39. Suh J.K., Matthew H.W. Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: A review // Biomaterials.– 2000.– Vol. 21, № 24.– P. 2589- 2598.

40. Tonsomboon K., Oyen M.L. Composite electrospun gelatin fiber-alginate gel scaffolds for mechanically robust tissue engineered cornea // J. Mech. Behav. Biomed. Mater.– 2013.– Vol. 21.– P. 185-194.

41. Vaissiere G., Chevallay B., Herbage D., Damour O. Comparative analysis of different collagen-based biomaterials as scaffolds for longterm culture of human fibroblasts // Med. Biol. Eng. Comput.– 2000.– Vol. 38, № 2.– P. 205-210.

42. Zhang M., Li X.H., Gong Y.D. et al. Properties and biocompatibility of chitosan films modified by blending with PEG // Biomaterials.– 2002.– Vol. 23.– № 13.– P. 2641-2648.


Для цитирования:


Борзенок С.А., Желтоножко А.А., Комах Ю.А., Сабурина И.Н., Агапов И.И., Богуш В.Г. ТЕОРЕТИЧЕСКИЕ ПРЕДПОСЫЛКИ К ВЫБОРУ МАТЕРИАЛА ДЛЯ МАТРИЦЫ БИОИНЖЕНЕРНОЙ КОНСТРУКЦИИ ИСКУССТВЕННОЙ РОГОВИЦЫ. Офтальмохирургия. 2013;(4):86-88. https://doi.org/10.25276/0235-4160-2013-4-86-88

For citation:


Borzenok S.A., Zheltonozhko А.А., Komakh Y.A., Saburina I.N., Agapov I.I., Bogush V.G. THEORETICAL BACKGROUND TO THE CHOICE OF MATERIAL FOR MATRICES OF THE BIOENGINEERING CONSTRUCTION OF THE ARTIFICIAL CORNEA. Fyodorov Journal of Ophthalmic Surgery. 2013;(4):86-88. https://doi.org/10.25276/0235-4160-2013-4-86-88

Просмотров: 137


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 0235-4160 (Print)
ISSN 2312-4970 (Online)